Repository logo
Collections
Browse
Statistics
  • English
  • हिंदी
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Publications
  3. Journal Article
  4. Automatic segmentation and yield measurement of fruit using shape analysis

Publication:
Automatic segmentation and yield measurement of fruit using shape analysis

Date

01-05-2012

Authors

Patel, Hetal N
Jain, R K
Joshi, Manjunath V
Joshi, Manjunath V
Joshi, Manjunath V
Joshi, Manjunath V
Joshi, Manjunath VORCID 0000-0002-1842-9118
Joshi, Manjunath V

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

In comparison to field crops such as cereals, cotton, hay and grain, specialty crops often require more resources, are usually more sensitive to sudden changes in growth conditions and are known to produce higher value products. Providing quality and quantity assessment of specialty crops during harvesting is crucial for securing higher returns and improving management practices. Technical advancements in computer and machine vision have improved the detection, quality assessment and yield estimation processes for various fruit crops, but similar methods capable of exporting a detailed yield map for vegetable crops have yet to be fully developed. A machine vision-based yield monitor was designed to perform size categorization and continuous counting of shallots in-situ during the harvesting process. Coupled with a software developed in Python, the system is composed of a video logger and a global navigation satellite system. Computer vision analysis is performed within the tractor while an RGB camera collects real-time video data of the crops under natural sunlight conditions. Vegetables are first segmented using Watershed segmentation, detected on the conveyor, and then classified by size. The system detected shallots in a subsample of the dataset with a precision of 76%. The software was also evaluated on its ability to classify the shallots into three size categories. The best performance was achieved in the large class (73%), followed by the small class (59%) and medium class (44%). Based on these results, the occasional occlusion of vegetables and inconsistent lighting conditions were the main factors that hindered performance. Although further enhancements are envisioned for the prototype system, its modular and novel design permits the mapping of a selection of other horticultural crops. Moreover, it has the potential to benefit many producers of small vegetable crops by providing them with useful harvest information in real-time.

Description

Keywords

Citation

Hetal N. Patel, R. K. Jain and Joshi, Manjunath V, " Automatic segmentation and yield measurement of fruit using shape analysis," International Journal of Computer Applications, vol. 45, no. 7, pp. 19-24, May. 2012. url: http://research.ijcaonline.org/volume45/number7/pxc3879119.pdf

URI

https://ir.daiict.ac.in/handle/dau.ir/1691

Collections

Journal Article

Endorsement

Review

Supplemented By

Referenced By

Full item page

Research Impact

Metrics powered by PlumX, Altmetric and Dimensions

 
Quick Links
  • Home
  • Search
  • Research Overview
  • About
Contact

DAU, Gandhinagar, India

library@dau.ac.in

+91 0796-8261-578

Follow Us

© 2025 Dhirubhai Ambani University
Designed by Library Team