Publication:
Burning and w-burning of geometric graphs

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorGorain, Barun
dc.contributor.authorGupta, Arya T
dc.contributor.authorLokhande, Swapnil A
dc.contributor.authorMondal, Kaushik
dc.contributor.authorPandit, Supantha
dc.date.accessioned2025-08-01T13:09:28Z
dc.date.issued15-09-2023
dc.description.abstractGraph burning runs on discrete time-steps. The aim is to burn all the vertices in a given graph using a minimum number of time-steps. This number is known to be the burning number of the graph. The spread of social influence, an alarm, or a social contagion can be modeled using graph burning. The less the burning number, the faster the spread.It is well-known that the optimal burning of general graphs is NP-complete. Further, graph burning has been shown to be NP-complete on a vast majority classes of graphs.Approximation results also exist for several graph classes. In this article, we show that the burning problem is NP-complete on connected interval graphs and permutation graphs. We also study the burning properties of grids. More precisely, we show that the lower bound of the burning number of a grid is at least . We provide a 2-approximation for burning a square grid.We extend the study of the -burning problem, a variation of the graph burning problem where we allow a constant number of vertices to be burnt in any time-step. We prove that -burning of interval, spider, and permutation graphs are NP-complete for any constant . We also provide a 2-approximation for the -burning problem on trees.
dc.format.extent83-98
dc.identifier.citationBarun Gorain, Arya T. Gupta, Swapnil A. Lokhande, Kaushik Mondal, and Pandit, Supantha, "Burning and w-burning of geometric graphs," Discrete Applied Mathematics, Elsevier, ISSN: 1872-6771, vol. 336, pp. 83-98, Sep. 2023, doi: 10.1016/j.dam.2023.03.026. [Published Date: 17 Apr. 2023]
dc.identifier.doi10.1016/j.dam.2023.03.02610.1016/j.dam.2023.03.026
dc.identifier.issn1872-6771
dc.identifier.scopus2-s2.0-85152494112
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1959
dc.identifier.wosWOS:000991811400001
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofseriesVol. 336; No.
dc.sourceDiscrete Applied Mathematics
dc.source.urihttps://linkinghub.elsevier.com/retrieve/pii/S0166218X23001099
dc.titleBurning and w-burning of geometric graphs
dspace.entity.typePublication
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication.latestForDiscovery985e86c2-92a5-456b-88e9-39a0de2786c6

Files

Collections