Publication:
Discrimination of multi-crop scenarios with polarimetric SAR data using Wishart mixture model

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorChaudhari, Nilam
dc.contributor.authorMitra, Suman
dc.contributor.authorChirakkal, Sanid
dc.contributor.authorMandal, Srimanta
dc.contributor.authorPutrevu, Deepak
dc.contributor.authorMisra, Arundhati
dc.contributor.researcherChaudhari, Nilam (201911063)
dc.date.accessioned2025-08-01T13:09:27Z
dc.date.issued20-08-2021
dc.description.abstractDiscrimination of crop varieties spanned over heterogeneous agriculture land is a vital application of polarimetric SAR images for agriculture monitoring and assessment. The covariance matrix of polarimetric SAR images is observed to follow a complex Wishart distribution for major classification tasks. It is true for homogeneous regions, but for heterogeneous regions, the covariance matrix follows a mixture of multiple Wishart distributions. We aim to improve the classification accuracy when the terrain under observation is heterogeneous. For this purpose, Wishart mixture model is employed along with expectation-maximization (EM) algorithm for parameter estimation. Elbow method helps us to devise the number of mixtures. The convergence of the EM algorithm depends on the choice of initial points. So, to improve the robustness of the model, different initialization approaches, such as random,�K-means, and global�K-means, are embedded in the EM algorithm. Further, the degrees of freedom is one of the crucial parameters of Wishart distribution. Therefore, the impact of different degrees of freedom is analyzed on classification accuracy. The method that is equipped with initialization technique along with optimum degrees of freedom is assessed using three full polarimetric SAR data sets of agriculture lands. The first two are benchmark data sets of Flevoland, Netherlands, region acquired by AIRSAR sensor, and third is our study area of Mysore, India, acquired by RADARSAT-2 sensor.
dc.identifier.citationNilam Chaudhari, Mitra, Suman K, Sanid Chirakkal, Mandal, Srimanta, Deepak Putrevu and Arundhati Misra"Discrimination of multi-crop scenarios with polarimetric SAR data using Wishart mixture model," Journal of Applied Remote Sensing, vol. 15, no.3, SPIE, ISSN: 1931-3195, 20 August 2021 doi: 10.1117/1.JRS.15.034514
dc.identifier.doi10.1117/1.JRS.15.034514
dc.identifier.scopus2-s2.0-85116397341
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1945
dc.identifier.wosWOS:000687651100001
dc.language.isoen
dc.publisherSPIE
dc.relation.ispartofseriesVol. 15; No. 3
dc.sourceJournal of Applied Remote Sensing
dc.source.urihttps://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-15/issue-3/034514/Discrimination-of-multi-crop-scenarios-with-polarimetric-SAR-data-using/10.1117/1.JRS.15.034514.short?SSO=1
dc.titleDiscrimination of multi-crop scenarios with polarimetric SAR data using Wishart mixture model
dspace.entity.typePublication
relation.isAuthorOfPublicationb322e974-da13-4eae-b8b0-f1f8fec5a4c2
relation.isAuthorOfPublicationbedf7017-1f5b-481b-8dd0-7584ef0f1369
relation.isAuthorOfPublicationbedf7017-1f5b-481b-8dd0-7584ef0f1369
relation.isAuthorOfPublication.latestForDiscoverybedf7017-1f5b-481b-8dd0-7584ef0f1369

Files

Collections