Publication:
Controlled K -frames in Hilbert C*-modules

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorRajput, Ekta
dc.contributor.authorSahu, Nabin Kumar
dc.contributor.authorMishra, Vishnu Narayan
dc.contributor.researcherRajput, Ekta (201621011)
dc.date.accessioned2025-08-01T13:09:13Z
dc.date.issued30-03-2022
dc.description.abstractControlled frames have been the subject of interest because of their ability to improve the numerical efficiency of iterative algorithms for inverting the frame operator. In this paper, we introduce the notion of controlled�-frame or controlled operator frame in Hilbert�-modules. We establish the equivalent condition for controlled�-frame. We investigate some operator theoretic characterizations of controlled�-frames and controlled Bessel sequences. Moreover, we establish the relationship between the�-frames and controlled�-frames. We also investigate the invariance of a controlled�-frame under a suitable map�. At the end, we prove a perturbation result for controlled�-frame.
dc.format.extent91-107
dc.identifier.citationEkta Rajput, Sahu, Nabin Kumarand Vishnu Narayan Mishra, "Controlled K -frames in Hilbert C*-modules," Korean Journal of Mathematics, The Kangwon-Kyungki Mathematical Society, vol. 30 no. 1, ISSN: 2288-1433, 30 Mar. 2022, pp. 91-107, doi:10.11568/kjm.2022.30.1.91.
dc.identifier.doi10.11568/kjm.2022.30.1.91
dc.identifier.issn2288-1433
dc.identifier.scopus2-s2.0-85174303618
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1745
dc.identifier.wosWOS:000782643200010
dc.language.isoen
dc.publisherThe Kangwon-Kyungki Mathematical Society
dc.relation.ispartofseriesVol. 30; No. 1
dc.sourceKorean Journal of Mathematics, The Kangwon-Kyungki Mathematical Society
dc.source.urihttps://kkms.org/index.php/kjm/article/view/1241
dc.titleControlled K -frames in Hilbert C*-modules
dspace.entity.typePublication
relation.isAuthorOfPublicationb39d984e-1e33-4fbb-a241-72102fa011e5
relation.isAuthorOfPublicationb39d984e-1e33-4fbb-a241-72102fa011e5
relation.isAuthorOfPublication.latestForDiscoveryb39d984e-1e33-4fbb-a241-72102fa011e5

Files

Collections