Publication:
Handwritten Digit Recognition Using Bayesian ResNet

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorMhasakar, Purva
dc.contributor.authorTrivedi, Prapti
dc.contributor.authorMandal, Srimanta
dc.contributor.authorMitra, Suman
dc.contributor.researcherMhasakar, Purva (201601082)
dc.contributor.researcherTrivedi, Prapti (201601020)
dc.date.accessioned2025-08-01T13:09:24Z
dc.date.issued02-08-2021
dc.description.abstractThe problem of handwritten digit recognition has seen various developments in the recent times, especially in neural network domain. The methods based on neural network work quite effectively for the seen classes of data by providing deterministic results. However, these methods tend to behave in similar fashion even for unseen class of data. For example, a neural network trained on English language digits will give a deterministic prediction even when tested on digits of other languages. Hence, it is required to predict uncertainty for such methods in this scenario. In this paper, we employ Bayesian inference into the existing ResNet18 framework to bring out uncertainty for handwritten digit recognition when there is a new class of test digit. We term the new architecture as B-ResNet. The novel B-ResNet is first of its kind to be investigated for the handwritten digit recognition. Various experiments on datasets of English, Devanagari, Gujarati, Bengali digits and their all possible combinations demonstrate the efficiency and performance of the B-ResNet for hand written digit recognition.
dc.format.extent1-10
dc.identifier.citationPurva Mhasakar, Prapti Trivedi, Mandal, Srimanta, and Mitra, Suman K, "Handwritten Digit Recognition Using Bayesian ResNet," SN Computer Science, vol. 2, Article no. 399, Springer, ISSN: 2661-8907 pp. 1-10, 2 Aug. 2021 doi: 10.1007/s42979-021-00791-6
dc.identifier.doi10.1007/s42979-021-00791-6
dc.identifier.issn2661-8907
dc.identifier.scopus2-s2.0-85131808550
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1910
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofseriesVol. 2; No.
dc.source SN Computer Science
dc.source.urihttps://link.springer.com/article/10.1007/s42979-021-00791-6
dc.titleHandwritten Digit Recognition Using Bayesian ResNet
dspace.entity.typePublication
relation.isAuthorOfPublicationbedf7017-1f5b-481b-8dd0-7584ef0f1369
relation.isAuthorOfPublicationb322e974-da13-4eae-b8b0-f1f8fec5a4c2
relation.isAuthorOfPublicationbedf7017-1f5b-481b-8dd0-7584ef0f1369
relation.isAuthorOfPublication.latestForDiscoverybedf7017-1f5b-481b-8dd0-7584ef0f1369

Files

Collections