Publication:
Covering and packing of rectilinear subdivision

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorJana, Satyabrata
dc.contributor.authorPandit, Supantha
dc.contributor.authorPandit, Supantha
dc.contributor.authorPandit, Supantha
dc.contributor.authorPandit, Supantha
dc.contributor.authorPandit, Supantha
dc.contributor.authorPandit, Supantha
dc.date.accessioned2025-08-01T13:09:27Z
dc.date.issued01-11-2020
dc.description.abstractWe study a class of geometric covering and packing problems for bounded closed regions on the plane. We are given a set of axis-parallel line segments that induce a planar subdivision with bounded (rectilinear) faces. We are interested in the following problems. (P1) STABBING-SUBDIVISION: Stab all closed bounded faces of the planar subdivision by selecting a minimum number of points in the plane. (P2) INDEPENDENT-SUBDIVISION: Select a maximum size collection of pairwise non-intersecting closed bounded faces of the planar subdivision. (P3) DOMINATING-SUBDIVISION: Select a minimum size collection of bounded faces of the planar subdivision such that every other face of the subdivision that is not selected has a non-empty intersection (i.e., sharing an edge or a vertex) with some selected face. We show that these problems are NP-hard. We even prove that these problems are NP-hard when we concentrate only on the rectangular faces of the subdivision. Further, we provide constant factor approximation algorithms for the STABBING-SUBDIVISION problem.
dc.format.extent166-176
dc.identifier.citationSatyabrata Jana and Pandit, Supantha, "Covering and packing of rectilinear subdivision," Theoretical Computer Science, vol. 840, pp. 166-176, 6, Nov. 2020. doi: 10.1016/j.tcs.2020.07.038
dc.identifier.doi10.1016/j.tcs.2020.07.038
dc.identifier.issn1879-2294
dc.identifier.scopus2-s2.0-85089290581
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1951
dc.identifier.wosWOS:000572872700009
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofseriesVol. 840; No.
dc.sourceTheoretical Computer Science
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0304397520304175?via%3Dihub
dc.titleCovering and packing of rectilinear subdivision
dspace.entity.typePublication
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication.latestForDiscovery985e86c2-92a5-456b-88e9-39a0de2786c6

Files

Collections