Publication:
Covering and packing of triangles intersecting a straight line

dc.contributor.affiliationDA-IICT, Gandhinagar
dc.contributor.authorPandit, Supantha
dc.date.accessioned2025-08-01T13:09:28Z
dc.date.issued01-10-2022
dc.description.abstractWe study four geometric optimization problems:�set cover,�hitting set,�piercing set, and�independent set�with�right-triangles�(a triangle is a right-triangle whose base is parallel to the�-axis, perpendicular is parallel to the�-axis, and the slope of the hypotenuse is�). The input triangles are constrained to be intersecting a�straight line. The straight line can either be a�horizontal�or an�inclined�line (a line whose slope is�). A right-triangle is said to be a�-right-triangle, if the length of both its base and perpendicular is�. For 1-right-triangles�where the triangles intersect an inclined line, we prove that the set cover and hitting set problems are�-hard, whereas the piercing set and independent set problems are in�. The same results hold for 1-right-triangles�where the triangles are intersecting a horizontal line instead of an inclined line. We prove that the piercing set and independent set problems with right-triangles�intersecting an inclined line are�-hard. Finally, we give an��time exact algorithm for the independent set problem with�-right-triangles�intersecting a straight line such that��takes more than one value from�, for some integer�. We also present�-time dynamic programming algorithms for the independent set problem with 1-right-triangles�where the triangles intersect a horizontal line and an inclined line.
dc.format.extent92-110
dc.identifier.citationPandit, Supantha"Covering and packing of triangles intersecting a straight line," Discrete Applied Mathematics, Elsevier, ISSN: 0166-218X, vol. 319, Oct. 2022, pp. 92-110, doi: 10.1016/j.dam.2021.11.017. [Published Date: 15 Dec. 2021]
dc.identifier.doi10.1016/j.dam.2021.11.017
dc.identifier.issn0166-218X
dc.identifier.scopus2-s2.0-85121811833
dc.identifier.urihttps://ir.daiict.ac.in/handle/dau.ir/1958
dc.identifier.wosWOS:000862836800010
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofseriesVol. 319; No.
dc.sourceDiscrete Applied Mathematics
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0166218X21004698?via%3Dihub
dc.titleCovering and packing of triangles intersecting a straight line
dspace.entity.typePublication
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication985e86c2-92a5-456b-88e9-39a0de2786c6
relation.isAuthorOfPublication.latestForDiscovery985e86c2-92a5-456b-88e9-39a0de2786c6

Files

Collections