Theses and Dissertations
Permanent URI for this collectionhttp://ir.daiict.ac.in/handle/123456789/1
Browse
3 results
Search Results
Item Open Access Analysis of address allocation protocols for mobile ad hoc networks(Dhirubhai Ambani Institute of Information and Communication Technology, 2011) Sati, Mohit; Srivastava, Sanjay; Divakaran, SrikrishnanIn almost all networks, it is necessary to have a unique identifier for each node. This identifier is used to find out route locating a particular node. So an address is must for any node for unicast communication. Addresses can be preconfigured manually or can be assigned dynamically using a server (e.g. DHCP server). Manual configuration of ad hoc network is not possible for large scale networks. And setting up a server is not possible due to lack of infrastructure in Ad Hoc Networks. So it is necessary to have a mechanism by which we can allocate addresses to the nodes dynamically without any prior setup. Lack of infrastructure and mobility of nodes makes address allocation a challenging task in MANET. We present worst case message complexity analysis of a number of proposed address allocation protocols, which can be useful for estimating upper bounds for overhead and latency involved in address allocation as well as partitioning and merging. We also show that the worst case analysis is not a useful indicator of real world performance of the protocols. Buddy approach [5] is one of the many proposed approaches for address allocation. We model DPDA (A Distributed Protocol for Dynamic Address assignment in mobile ado networks)[6], a protocol based on buddy approach, to estimate the overhead involved in address allocation. We conduct simulations in NS-2 and compare with analytical results to validate our model. We perform simplified simulations using Python script which also validates the proposed model. We also do a simulation based comparison of MANETconf (MANET configuration) [8] and DPDA[6] in term of overhead and latency in address allocation, which shows that DPDA causes lower communication overhead and latency than Manetconf.Item Open Access Scalable routing in mobile ad hoc networks(Dhirubhai Ambani Institute of Information and Communication Technology, 2009) Patel, Brijesh; Srivastava, SanjayIn Mobile Ad Hoc Networks (MANETs), performing routing is a challenging task in presence of the varying network parameters like node mobility, traffic and network size. It is very important to analyze the scalability characteristics of the routing protocols with respect to these parameters. ZRP is considered to be one of the most scalable routing protocols due to its multiscoping and hybridization features. We propose a general, parameterized model for analyzing control overhead of ZRP. A generic probabilistic model for data traffic is also proposed which can be replaced by different traffic models. Our analytical model is validated by comparisons with simulations performed on different scenarios. In our simulation results we have observed that the optimal zone radius lies where the proactive and reactive overhead components of ZRP are approximately equal as observed in [19]. We have also observed that optimal zone radius setting is different under different network conditions. Our simulations show that as the mobility increases the optimal zone radius value decreases, and as the traffic increases the value of optimal zone radius increases. Moreover, if a node operates away from the optimal zone radius setting then it has to bear and ditional routing overhead. Our simulations show that this deviation is quite high in case of low mobility (upto 35%) than in high mobility (upto 23%).Item Open Access Analysis of address allocation protocols for mobile ad hoc networks(Dhirubhai Ambani Institute of Information and Communication Technology, 2009) Sheth, Kavan J.; Srivastava, SanjayIn almost all networks, it is necessary to have a unique identifier for each node. This identifier is used to find out route locating a particular node. So an address is must for any node for unicast communication. Addresses can be preconfigured manually or can be assigned dynamically using a server (e.g. DHCP server). Manual configuration of ad hoc network is not possible for large scale networks. And setting up a server is not possible due to lack of infrastructure in Ad Hoc Networks. So it is necessary to have a mechanism by which we can allocate addresses to the nodes dynamically without any prior setup. Lack of infrastructure and mobility of nodes makes address allocation a challenging task in MANET. We present worst case message complexity analysis of a number of proposed address allocation protocols, which can be useful for estimating upper bounds for overhead and latency involved in address allocation as well as partitioning and merging. We also show that the worst case analysis is not a useful indicator of real world performance of the protocols. Buddy approach [5] is one of the many proposed approaches for address allocation. We model DPDA (A Distributed Protocol for Dynamic Address assignment in mobile ado networks)[6], a protocol based on buddy approach, to estimate the overhead involved in address allocation. We conduct simulations in NS-2 and compare with analytical results to validate our model. We perform simplified simulations using Python script which also validates the proposed model. We also do a simulation based comparison of MANETconf (MANET configuration) [8] and DPDA[6] in term of overhead and latency in address allocation, which shows that DPDA causes lower communication overhead and latency than Manetconf.