Repository logo
Collections
Browse
Statistics
  • English
  • हिंदी
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Theses and Dissertations
  3. M Tech Dissertations
  4. WSN Network Analysis and Prediction using ML

WSN Network Analysis and Prediction using ML

Files

201811013.pdf (837.32 KB)

Date

2020

Authors

Patel, Charmy Bharatbhai

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Wireless sensor networks are a group of sensors that monitor and record the physical changes of the environment that change rapidly over time. This ability of WSNs help in various fields ranging from the engineering industry to immediate home environments. A sensor node is capable of performing some processing, gathering sensory information, and communicating with other connected nodes in the Network. To make some decisions in this Network, sensors adopt machine learning algorithms. The main aim of this project is to find out the parameters which can increase throughput and decrease the Delay in our Network. Different network sizes have been taken into consideration to find the parameter changes required to meet our above objective. This research project mainly includes the data collection phase observing a network and learning phase. It is simulated for different network scenarios. Three types of machine learning algorithms have been applied: Linear Regression, Neural Network, and Random Forest. By applying these algorithms, we get to know that RandomForest overfits the model, whereas Neural-Network underfits the model because they are non-linear algorithms. Hence we can say that it is showing linear behavior as non-linear algorithms like Neural-Network and RandomForest didn’t help us to estimate the throughput and delay in our Network, and hence they are not suitable.

Description

Keywords

WSN, IoT, Throughput, Delay, Linear Regression, Random Forest, Neural Network

Citation

Patel, Charmy Bharatbhai (2020). WSN Network Analysis and Prediction using ML. Dhirubhai Ambani Institute of Information and Communication Technology. vii, 29 p. (Acc.No: T00845)

URI

http://ir.daiict.ac.in/handle/123456789/923

Collections

M Tech Dissertations

Endorsement

Review

Supplemented By

Referenced By

Full item page
 
Quick Links
  • Home
  • Search
  • Research Overview
  • About
Contact

DAU, Gandhinagar, India

library@dau.ac.in

+91 0796-8261-578

Follow Us

© 2025 Dhirubhai Ambani University
Designed by Library Team