Repository logo
Collections
Browse
Statistics
  • English
  • हिंदी
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Theses and Dissertations
  3. M Tech Dissertations
  4. Handwritten numeral recognition using polar histogram of low-level stroke features

Handwritten numeral recognition using polar histogram of low-level stroke features

Files

201611037_Krishna A Parekh.pdf (480.48 KB)

Date

2018

Authors

Parekh, Krishna A.

Journal Title

Journal ISSN

Volume Title

Publisher

Dhirubhai Ambani Institute of Information and Communication Technology

Abstract

Optical Character Recognition (OCR) is a technology that converts handwritten as well as printed documents into digital documents. It is also important for conversion of PDFs as well as images into an editable and searchable form. In past few decades, the world has very rapidly moved towards digitization. Considerable amount of data can be found in PDFs or document images of handwritten or printed documents. So there is need for conversion of this data to machine encoded form. This makes search and modification of data simpler. Here comes the OCR technology into picture. The thesis focuses on the handwritten numeral recognition of an Indian script, Gujarati. The proposed method employees the Low-Level Stroke (LLS) for feature extraction and the polar histogram method for feature vector generation that enables the reduced sized representation of features. The baseline experiments were performed using k-nearest neighbor (k-NN) classifier and the result was improved further using support vector machine (SVM) classifier with radial basis function (RBF) kernel. The method of the Polar histogram of LLS features was also tested on Devanagari and English handwritten numeral datasets. The accuracy of classification for Gujarati, Devanagari, and English are at par with the state-of-the-art methodologies. The experiments were also performed for mixed dataset Gujarati-English, Gujarati-Devanagari, English-Devanagari, and Gujarati-English-Devanagari. In all experiments, the feature vector size is significantly less while the accuracy is not compromised much. However, the main contribution of the thesis is evident from the reduced size of feature vector generated using proposed method for feature vector generation (Polar histogram).

Description

Keywords

OCR, Low-level stroke, k- NN, Support vVector machine, Vector generation

Citation

Parekh, Krishna A. (2018). Handwritten Numeral Recognition using Polar Histogram of Low-Level Stroke Features. Dhirubhai Ambani Institute of Information and Communication Technology, vi, 36 p. (Acc. No: T00723)

URI

http://ir.daiict.ac.in/handle/123456789/757

Collections

M Tech Dissertations

Endorsement

Review

Supplemented By

Referenced By

Full item page
 
Quick Links
  • Home
  • Search
  • Research Overview
  • About
Contact

DAU, Gandhinagar, India

library@dau.ac.in

+91 0796-8261-578

Follow Us

© 2025 Dhirubhai Ambani University
Designed by Library Team