Repository logo
Collections
Browse
Statistics
  • English
  • हिंदी
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Theses and Dissertations
  3. M Tech Dissertations
  4. Shadow Detection and Removal from video using Deep Learning

Shadow Detection and Removal from video using Deep Learning

Files

202111079.pdf (5.22 MB)

Date

2023

Authors

Dodiya, Krutika

Journal Title

Journal ISSN

Volume Title

Publisher

Dhirubhai Ambani Institute of Information and Communication Technology

Abstract

The removal of shadow from images is crucial in computer vision as it can enhancethe interpretability and visual quality of images. This research work proposesa cascade U-Net architecture for the shadow removal, consisting of twostages of U-Net Architecture. In the first stage, a U-Net is trained using theshadow images and their corresponding ground truth to predict the shadow freeimages. The second stage uses the predicted shadow free images and groundtruth as input to another U-Net, which further refines the shadow removal results.This cascade U-Net architecture enables the model to learn and refine theshadow removal progressively, leveraging both the initial predictions and groundtruth.Experimental evaluations on benchmark datasets demonstrate that our approachachieves notably good performance in both qualitative and quantitative evaluations.By using both objective metrics such as Structural Similarity Index(SSIM),and Root mean Square Error (RMSE), and subjective evaluations where humanobservers rate the quality of the shadow removal results, our approach was foundto outperform other state-of-the-art methods. Overall, our proposed cascade UNetarchitecture offers a promising solution for the shadow removal that canimprove image quality and interpretability

Description

Keywords

shadow removal, cascade U-Net, deep learning, computer vision, Image processing

Citation

Dodiya, Krutika (2023). Shadow Detection and Removal from video using Deep Learning. Dhirubhai Ambani Institute of Information and Communication Technology. viii, 36 p. (Acc. # T01147).

URI

http://ir.daiict.ac.in/handle/123456789/1206

Collections

M Tech Dissertations

Endorsement

Review

Supplemented By

Referenced By

Full item page
 
Quick Links
  • Home
  • Search
  • Research Overview
  • About
Contact

DAU, Gandhinagar, India

library@dau.ac.in

+91 0796-8261-578

Follow Us

© 2025 Dhirubhai Ambani University
Designed by Library Team